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Abstract Selective genotyping of one or both phenotypic

extremes of a population can be used to detect linkage

between markers and quantitative trait loci (QTL) in situ-

ations in which full-population genotyping is too costly or

not feasible, or where the objective is to rapidly screen

large numbers of potential donors for useful alleles with

large effects. Data may be subjected to ‘trait-based’ anal-

ysis, in which marker allele frequencies are compared

between classes of progeny defined based on trait values, or

to ‘marker-based’ analysis, in which trait means are com-

pared between progeny classes defined based on marker

genotypes. Here, bidirectional and unidirectional selective

genotyping were simulated, using population sizes and

selection intensities relevant to cereal breeding. Control of

Type I error was usually adequate with marker-based

analysis of variance or trait-based testing using the normal

approximation of the binomial distribution. Bidirectional

selective genotyping was more powerful than unidirec-

tional. Trait-based analysis and marker-based analysis of

variance were about equally powerful. With genotyping of

the best 30 out of 500 lines (6%), a QTL explaining 15%

of the phenotypic variance could be detected with a power

of 0.8 when tests were conducted at a marker 10 cM from

the QTL. With bidirectional selective genotyping, QTL

with smaller effects and (or) QTL farther from the nearest

marker could be detected. Similar QTL detection approa-

ches were applied to data from a population of 436

recombinant inbred rice lines segregating for a large-effect

QTL affecting grain yield under drought stress. That QTL

was reliably detected by genotyping as few as 20 selected

lines (4.5%). In experimental populations, selective geno-

typing can reduce costs of QTL detection, allowing larger

numbers of potential donors to be screened for useful

alleles with effects across different backgrounds. In plant

breeding programs, selective genotyping can make it pos-

sible to detect QTL using even a limited number of

progeny that have been retained after selection.

Introduction

Many useful alleles with large effects on economically

important quantitative traits are likely present in crop

germplasm, yet few have been deployed in breeding pro-

grams. One reason for this is that the experimental

approaches used to discover quantitative trait loci (QTL)

which typically involve assaying trait phenotypes and

marker genotypes on several hundred progeny from a
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cross, can be too costly to apply across a wide range of

germplasm.

Selective genotyping is an alternative approach for QTL

detection, in which DNA markers are assayed only on the

most genetically informative progeny: those with extremely

high and/or low phenotypic values for a trait of interest. This

allocation of genotyping resources only to selected progeny

can reduce genotyping costs with little loss of information,

freeing resources for investigation of more and larger pop-

ulations, and/or for validation and fine-mapping of QTL that

have been detected. This concept was introduced by Lebo-

witz et al. (1987), who used the term ‘trait-based analysis’ to

refer to approaches to QTL mapping in which marker allele

frequencies are compared between groups of progeny

selected based on trait values. Lander and Botstein (1989)

introduced the more general term ‘selective genotyping’ for

QTL mapping based on selected groups of progeny, and

suggested that QTL analysis in this case could also be based

on the usual marker-based approaches that compare phe-

notypic values among marker genotype classes.

Lebowitz et al. (1987) and Gallais et al. (2007) have

discussed the theory and experimental design for analysis

of marker allele frequencies in classes of progeny defined

on the basis of quantitative trait values. Both groups con-

cluded that trait-based analysis of selectively genotyped

progeny can be a useful alternative to marker-based anal-

ysis of all individuals in a population, when only one

quantitative trait is of interest. Gallais et al. (2007) con-

cluded that, for a given population size of phenotyped

individuals, the optimal proportion selected for genotyping

is around 30% from each tail.

Lander and Botstein (1989) discussed the application of

marker-based analysis to trait and marker data from selec-

tively genotyped populations, suggesting that maximum-

likelihood QTL detection methods could be applied, with

the genotypes of non-selected progeny considered as miss-

ing values. Darvasi and Soller (1992) investigated this

approach, concluding that for detection of marker-QTL

linkage for an individual trait, it is rarely useful to genotype

more than the upper and lower 25% of the phenotypic fre-

quency distribution. Xu and Vogl (2000) developed an exact

maximum likelihood approach to map QTL by selective

genotyping using phenotypic values of genotyped individ-

uals only. Liu (1998), however, argued that selection will

bias hypothesis testing and parameter estimation in maxi-

mum-likelihood QTL analysis, and Lee (2005) used genetic

simulation to show that selection can reduce the accuracy of

QTL detection and bias the estimation of QTL effects.

Trait-based analysis has been applied for QTL detection

with bidirectional selective genotyping (i.e., analysis of

allele frequencies in both the high and low tails of the

phenotypic distribution; e.g., Zhang et al. 2003) and with

unidirectional selective genotyping (i.e. analysis of allele

frequencies from only one selected tail; e.g., Foolad et al.

2001). Unidirectional selective genotyping is of particular

interest for application within breeding programs, because

it has the potential to permit QTL detection using superior

progeny that have been retained under selection in breeding

programs. If effective, this could help integrate QTL

detection with plant breeding, addressing concerns that the

treatment of QTL discovery and cultivar development as

separate processes may have limited the impact of marker-

aided selection in plant breeding (Tanksley and Nelson

1996).

Although both marker-based and trait-based methods

have been proposed for analysis of data from selective

genotyping, the two approaches have not been compared in

detail. Further, analyses of the effects of various factors

(such as proportion selected, QTL effect, marker-QTL

distance) on the QTL detection power of selective geno-

typing have been based on asymptotic approximations of

theoretical distributions. These may differ appreciably

from the actual effects on power in small samples relevant

to actual experimental and breeding programs. Here, we

present results of simulation studies conducted to (1)

investigate the power and precision of QTL effect esti-

mation of trait-based and marker-based analysis in

unidirectional and bidirectional selective genotyping and

(2) examine the effects of the proportion selected for

genotyping, the magnitude of QTL effects, population size,

and marker-QTL distance on the power of QTL detection,

using values relevant to breeding programs in self-polli-

nated cereal crop species. We also present results from the

application of some of these methods to data from a rice

(Oryza sativa L.) mapping population. The overall objec-

tive of this work is to provide guidance in the design of

low-cost trait-based selective genotyping experiments that

can be applied to detect large-effect QTL alleles in crop

germplasm collections and in ongoing breeding programs.

Materials and methods

Genetic simulations

Unpublished Perl scripts (kindly provided by Hai Pham

and Nicholas Tinker) were used to simulate a single QTL

with an additive effect located at the centre of a 150-cM

linkage group. One marker locus was placed at the QTL

position, and 15 markers were placed on either side of the

QTL, with the probability of recombination between each

pair of adjacent markers set to 0.05, resulting in intervals

of 5.0 cM (Kosambi mapping function: Kosambi (1944))

and marker-QTL distances ranging from 0 to 75.0 cM.

An additional marker locus, not linked to the QTL or any

other marker locus, was also simulated in order to permit

348 Theor Appl Genet (2009) 118:347–358

123



calculation of Type I error rates. The reference population

was a set of doubled haploid lines (inbreeding coeffi-

cient = 1) derived without selection from the F1 of a cross

between two parental lines homozygous for alternative

alleles at the QTL and at each marker. The model for the

phenotypic variance of a trait in a population of random

doubled haploid lines was:

r2
P ¼ r2

QTL þ r2
BG þ r2

E ð1Þ

in which rP
2 is the phenotypic variance, rQTL

2 is the genetic

variance due to segregation of the QTL to be simulated,

rBG
2 is the genetic variance due to segregation of an

unspecified number of other QTL affecting the trait and not

linked to the simulated QTL or any of the simulated

markers, and rE
2 is the non-heritable variance. With rP

2 set

at a standard value of 1, with completely additive effects

and with equal frequencies (p = q = 0.5) for two

alternative alleles at the QTL, the additive effect of the

QTL, half the difference between alternative homozygotes

at the QTL (Mather and Jinks 1982), in a doubled haploid

population is:

a ¼
ffiffiffiffiffiffiffiffiffiffi

r2
QTL

q

ð2Þ

Using Eqs. 1 and 2, values of a and of the sum of

rBG
2 and rE

2 were set to provide models in which the

simulated QTL was responsible for 1, 3, 5, 9, 15 and 25%

of rP
2 (RQTL

2 from 0.01 to 0.25). This required the additive

effect of the QTL to be set at 0.1, 0.1732, 0.2236, 0.3, 0.3873

and 0.5, respectively. For each marker linked to the QTL,

the proportion of rP
2 expected to be associated with variation

at that marker was calculated as RP
2 = RQTL

2 (1 – 2r)2.

In each simulation run, a population of either 200 or 500

lines was generated. A total of 1000 simulation runs was

conducted for each combination of population size (200 or

500), and RQTL
2 (from 0.01 to 0.25). A phenotypic value

was computed for each line as the sum of a mean value l
set at 0, the additive effects of the alleles present at the

QTL and a random value drawn from a normal distribution

of mean 0 and variance r2
E þ r2

BG. Lines were ranked on

the basis of these phenotypic values, and those with

extreme phenotypic values were selected. From the popu-

lations of 500 lines, subsets of the highest and lowest

ranking 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, and

125 lines were selected for bidirectional selective geno-

typing (i.e., selected proportions of 0.02, 0.06, 0.10, 0.14,

0.18, 0.22, 0.26, 0.30, 0.34, 0.38, 0.42, 0.46, and 0.50,

respectively) and the highest ranking 10, 30, 50, 70, 90,

110, 130, 150, 170, 190, 210, 230 and 250 lines were

selected for unidirectional selective genotyping (i.e.,

selected proportions of 0.02, 0.06, 0.10, 0.14, 0.18, 0.22,

0.26, 0.30, 0.34, 0.38, 0.42, 0.46, and 0.50, respectively).

Similarly, from populations of 200 lines, subsets of the

highest ranking and lowest ranking 5, 15, 25, 45 and 55

lines were selected for bidirectional selective genotyping

(i.e., selected proportions of 0.05, 0.15, 0.25, 0.35, 0.45,

and 0.55, respectively) and the highest ranking 10, 30, 50,

70, 90, and 110 lines were selected for unidirectional

selective genotyping (i.e., selected proportions of 0.05,

0.15, 0.25, 0.35, 0.45, and 0.55, respectively).

Statistical analyses

Statistical analyses, including testing of marker-QTL

linkage and estimation of Type I error rates, power of QTL

detection, and QTL effects were conducted using SAS

procedures (SAS Institute 2003). Marker- and trait-based

analyses were used for QTL detection using a per-marker

significance level of a = 0.01:

Marker-based analysis

One-way analysis of variance (ANOVA) was applied to

test for differences in quantitative trait values between

contrasting marker genotypic classes. This test was applied

to data from bidirectional selective genotyping only.

Trait-based analysis

A test based on a normal approximation of a binomial

distribution of allele frequencies was applied to data from

unidirectional and bidirectional selective genotyping. A

QTL was considered to have been detected if dq

�

�

�

�� zða=2Þsq;

where dq

�

�

�

� is the absolute value of the difference in marker

allele frequencies, zða=2Þ is the ordinate of the standard

normal distribution such that the area under the curve from

-? to zða=2Þ equals 1� a=2; and Sq is the standard error of

the difference between marker allele frequencies. For

bidirectional selective genotyping, dq

�

�

�

�was estimated as the

difference in allele frequencies between the two tails and Sq

was estimated as:

sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

puqu

nu

þ plql

nl

r

ð3Þ

For unidirectional selective genotyping, dq

�

�

�

� was

estimated as the difference in allele frequency between

the selected tail and the expected frequency (0.5) and Sq

was estimated following Lebowitz et al. (1987) as:

sq ¼
ffiffiffiffiffiffiffiffiffi

puqu

nu

r

ð4Þ

In Eqs. 3 and 4, pu and qu are alternate allele frequencies

in selected samples from the upper tail, pl and ql are

alternate allele frequencies in selected samples from the

lower tail, and nu and nl are the numbers of lines in the
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upper and lower tails, respectively. Unlike tests used by

Lebowitz et al. (1987) and Zhang et al. (2003), the test used

here for the bidirectional selective genotyping does not

assume symmetrical changes in allele frequencies between

the tails, nor does it assume equal variances for the two

selected subsets. This test is similar to the selective

genotyping approach implemented by Gallais et al. (2007).

For each combination of population size, RQTL
2 , pro-

portion selected for genotyping and selective genotyping

design (unidirectional and bidirectional), the power of QTL

detection was expressed as the proportion of simulation

runs in which the simulated QTL was detected. Similarly,

the Type I error rate was expressed as the proportion of

simulation runs in which a significant effect was detected at

the marker that was not linked to the QTL. In each case,

marker-QTL linkage detection was considered reliable if

the power was greater than 0.8 (b\ 0.20) and Type I error

rate was smaller than 0.01 (a\ 0.01).

For each marker at which a significant effect was

detected by trait-based analysis of data from bidirectional

selective genotyping, the proportion of phenotypic variance

explained (RP
2) was estimated as:

R2
p ¼

d2
q

i2½qð1� qÞ� ð5Þ

where dq is the difference in allele frequencies between the

upper and lower selected tails and i is standardized

selection differential (Falconer 1989). Similarly, for QTL

detected by trait-based analysis of data from unidirectional

selective genotyping, RP
2 was estimated as:

R2
p ¼

d2
q

4½i2qð1� qÞ� ð6Þ

where dq is the difference between the observed allele

frequency in the selected tail and the expected allele fre-

quency for a random sample.

Analyses of data from a rice population

The effectiveness of selective genotyping was also inves-

tigated using data from a mapping study (Bernier et al.

2007) involving F3-derived recombinant inbred lines from

a cross between the upland rice cultivars ‘Vandana’ (a

moderately drought-tolerant Indian cultivar) and ‘Way

Rarem’ (a drought-susceptible but high-yielding Indone-

sian cultivar). Bernier et al. (2007) evaluated 436 Vandana/

Way Rarem lines for grain yield under severe drought

stress at Los Baños, Philippines, over 2 years. They

selected lines for genotyping at random (92 lines) or based

on their grain yield under drought stress in 2005 (57 high-

yielding lines and 48 low-yielding lines). There was some

overlap between the random and selected subsets, and the

total number of lines genotyped was 169. These lines were

genotyped with 131 DNA markers.

For each marker, allele frequencies were calculated for

the randomly selected subset of 92 lines and for subsets of

the 5, 10, 15, 20, 25 and 30 lines with the highest and

lowest grain yields under drought stress (i.e., selected

proportions of 0.01, 0.02, 0.03, 0.05, 0.06, and 0.07 for

unidirectional selection and selected proportions of 0.02,

0.04, 0.06, 0.10, 0.12, and 0.14 for bidirectional selection).

For each marker, the allele frequency observed in the

random subset was tested against the expected frequency of

0.5 by a v2 test (Steel et al. 1997). Marker-based ANOVA

and the trait-based test based on the normal approximation

of the binomial distribution were applied for both bidi-

rectional and unidirectional selective genotyping. For trait-

based analysis of bidirectional selective genotyping, the

allele frequencies in the high-yielding and low-yielding

subsets were tested against each other. For unidirectional

selective genotyping, allele frequencies in the high-yield-

ing subset were tested against the expected frequency of

0.5 and also against the frequencies observed in the ran-

domly selected subset.

Results

Simulation study

With selective genotyping of only 10 lines from a popu-

lation of 200 or 500, observed Type I error rates were

above the target rate of 0.01, especially when trait-based

analysis as applied to data from bidirectional selection, for

which the Type I error rate was above 0.06 (Table 1). With

genotyping of 30 or more lines, the Type I error never

exceeded 0.02, and converged on the target level of 0.01, as

increasing numbers of lines were genotyped.

As expected, power increased with the proportion of the

phenotypic variance explained by the simulated QTL

(RQTL
2 ) (Fig. 1) and with proximity of the marker locus to

the QTL (not shown). With equal numbers of lines geno-

typed, power was consistently greater for bidirectional than

for unidirectional selection (Fig. 1) and was greater for

selection from a population of 500 than from a population

of 200 (Fig. 1).

With bidirectional selection, QTL detection power was

somewhat better with the trait-based analysis than with

marker-based analysis, especially when small numbers of

lines were genotyped (Fig. 1). With bidirectional selection

in a population of 500 lines, a QTL explaining as little as

3% of the phenotypic variance could be reliably detected

(b B 0.20), but only if there was a marker coinciding with

the QTL and if a large number of lines (38% or more) were

genotyped (Table 2). QTL explaining a larger proportion
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Table 1 Type I error rates,

computed as the proportion of

6,000 simulation runs (1,000

simulation runs of each of the 6

RQTL
2 values) in which a

spurious marker-QTL linkage

was detected, with bidirectional

or unidirectional selective

genotyping of progeny from

populations of 200 or 500

doubled haploid lines, using

marker-based ANOVA or a

trait-based analysis using the

normal approximation of the

binomial distribution trait-based

analysis

Number of

lines selected

Bidirectional selective genotyping Unidirectional selective

genotyping

Marker-based

ANOVA

Trait-based

analysis

Trait-based

analysis

Population size = 200

10 0.022 0.065 0.024

30 0.013 0.020 0.016

50 0.013 0.020 0.016

70 0.011 0.013 0.011

90 0.011 0.015 0.016

110 0.010 0.010 0.010

Population size = 500

10 0.022 0.066 0.021

30 0.014 0.015 0.014

50 0.011 0.012 0.011

70 0.011 0.009 0.011

90 0.009 0.011 0.011

110 0.009 0.010 0.010

130 0.010 0.009 0.010

150 0.010 0.011 0.011

170 0.009 0.011 0.011

190 0.011 0.011 0.010

210 0.010 0.010 0.009

230 0.011 0.011 0.011

250 0.011 0.010 0.011

P
o

w
er

Unidirectional/trait-based (N = 200)Bidirectional/trait-based (N = 200)Bidirectional/marker-based (N = 200)

Unidirectional/trait-based (N = 500)Bidirectional/trait-based (N = 500)Bidirectional/marker-based (N = 500)

Proportion Selected

P
o

w
er

0
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0 0.60.50.40.30.20 0.60.50.40.30.2 0.10.1

Fig. 1 The observed QTL detection power of trait-based and marker-

based ANOVA of data from unidirectional and bidirectional selective

genotyping of a population of 500 or 200 doubled haploid lines

derived from a cross between two homozygous lines for markers at

0 cM from the QTL, and for QTL with a range of effect sizes in 1,000

simulation runs
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of the phenotypic variance could be reliably detected with

genotyping of a smaller proportion of lines and (or) by

testing at markers at some distance from the QTL. For

example, a QTL explaining 25% of the phenotypic vari-

ance could be reliably detected by genotyping only 2% of a

population of 500 lines at a marker 5 cM from the QTL or

even by genotyping 10% of the lines at a marker 35 cM

from the QTL (Table 2). Bidirectional selective genotyping

in a population of 200 lines was less effective, but still

adequate for reliable detection of large-effect QTLs

(Table 2).

With unidirectional selection, the number of lines gen-

otyped had little effect on detection power for QTL with

very small effects (which were rarely detected) and for

QTL with very large effects (which were almost always

detected) (Fig. 1). For QTL with intermediate effects, QTL

detection power reached a maximum at an intermediate

proportion of lines genotyped, and declined as additional

lines were genotyped. With unidirectional selection in a

population of 500 lines, a QTL explaining as little as 9% of

the phenotypic variance could be reliably detected, at most

of the selection proportions tried, provided that there was

a marker within 10 cM of the QTL (Table 2). QTL

explaining a larger proportion of the phenotypic variance

could reliably be detected by testing at more distant

markers (Table 2). With unidirectional selection in a pop-

ulation of only 200 lines, however, QTL explaining only

9% of the phenotypic variance were not reliably detected,

regardless of their proximity to markers (Table 2).

With bidirectional selective genotyping in a population

of 500 lines, RP
2 was usually slightly overestimated. With

bidirectional selective genotyping in a population of 200

lines, RP
2 was more seriously overestimated, particularly for

large-effect QTL. With unidirectional selective genotyping

RP
2 was underestimated, particularly for large-effect QTL

and for small population size (Fig. 2).

Rice dataset

Using data from the Vandana/Way Rarem rice population,

the QTL on chromosome 12 was detectable using selective

genotyping involving small numbers of progeny selected

from the tail(s) of the phenotypic distribution. With either

marker-based or trait-based analysis, genotyping of 15 low-

yielding lines and 15 high-yielding lines was sufficient to

detect a QTL at both RM28048 and RM28130, the two

markers flanking the 8.4-cM interval on chromosome 12 in

which Bernier et al. (2007) mapped a large-effect QTL

based on analysis of data from 158 lines (Table 3). Even

with only 10 lines genotyped from each tail of the distri-

bution, the QTL was detected at RM28130 and at markers

up to 18.1 cM away from the estimated QTL position.

With unidirectional selection, and with trait-based test-

ing of allele frequencies against the expected frequency of

0.5, genotyping of 10 lines from the upper tail of the

phenotypic distribution was sufficient to detect the QTL at

markers between 4.4 cM (RM28130) and 18.1 cM

(RM28166) from the estimated QTL position (Table 4).

However, QTL detection at the other flanking marker

(RM28048, 4.0 cM from the estimated QTL position)

required genotyping of 20 lines.

In the random sample of 92 lines from the Vandana/Way

Rarem rice population, segregation distortion was detected

at 39% of the marker loci. When allele frequencies in

selected tails were tested against the frequencies observed

in a random sample of lines, the QTL was detected con-

sistently at RM28130, provided 10 or more lines were

genotyped. However, with this test, the QTL was never

detected at the other flanking marker (RM28048), even

when 30 high-yielding lines were genotyped, even though

that marker’s allele frequencies did not deviate signifi-

cantly from 0.5 in the random sample.

In addition to detecting the QTL on chromosome 12,

all four selective genotyping approaches declared marker-

QTL linkage for the loci at which there was significant

segregation distortion and for one locus (RM290 on

chromosome 2) at which genotypic frequencies did not

deviate significantly from the expectations (Tables 3, 4).

The number of loci with significant segregation distortion

for which a QTL-marker linkage was declared was higher

in unidirectional selection when observed ratios were

tested against the expected ratios than when they were

tested against the ratios observed in the random sample

(Table 4).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

R2
p (expected)

Unidirectional (N = 200)

Bidirectional (N = 200)

Unidirectional (N = 500)

Bidirectional (N = 500)

R2
QTL

R
2 p

0.30.250.20.150.10.05

Fig. 2 Estimated versus expected value of the proportion of pheno-

typic variance accounted for by the QTL (Rp
2) (averaged over 1,000

simulation runs) in bidirectional and unidirectional selective geno-

typing of 50 lines from a population of 500 or 200 doubled haploid

lines for markers coinciding with the QTL with a range of effect sizes

(RQTL
2 from 0.01 to 0.25)
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Discussion

In most of the cases investigated here, observed rates of

Type I error were at or near the target rate of 0.01. In

contrast, we found (results not shown) that other possible

tests (those involving estimates of Sq obtained according to

the formula of Lebowitz et al. (1987) for bidirectional

selective genotyping, the test used by Foolad et al. (2001),

and the test used by Zhang et al. (2003)) gave high rates of

false positives, probably due to failure of data from

selectively genotyped populations to satisfy assumptions

on which the tests are based. The formula given by

Lebowitz et al. (1987) for bidirectional selection assumes

symmetrical changes in marker allele frequencies. The test

used by Zhang et al. (2003) assumes equal variances of

allele frequencies between the selected sub-set(s) while the

test used by Foolad et al. (2001) assumes equal variances

between the selected and random samples. In our simula-

tion experiments, the false positive rates were highest when

trait-based analysis was applied for bidirectional selective

genotyping of only 10 lines. This can be explained by the

reliance of this test on a normal approximation of the

binomial distribution, which is not adequate for small

samples from the extreme tails of a distribution.

Although trait-based and marker-based analyses have

more or less the same statistical power, trait based analysis

has two advantages relative to marker-based analysis: (1)

trait based analysis can readily be adapted to analysis of

selective DNA pooling data (Darvasi and Soller 1994),

something that is not possible for marker-based analysis,

and (2) trait based analysis can deal with the unidirectional

selective genotyping with its potential for use within

breeding programs, again something that is not possible for

marker-based analysis. Moreover, when small numbers of

progeny are selected bidirectionally, marker-based analysis

is not as powerful as trait-based analysis, even though it

uses more information (i.e., trait data in addition to marker

data). Trait data may not be useful unless the selected

subsets are large enough for precise estimation of means.

When a given number of progeny is selected based on

their phenotypic values for a trait of interest, a bidirectional

selection strategy will select more progeny that are phe-

notypically extreme (and therefore genetically informative)

than a unidirectional strategy. Therefore, bidirectional

selective genotyping can be expected to be more powerful

than unidirectional selective genotyping. Nevertheless,

unidirectional selective genotyping provided adequate

power to detect QTL with moderate to large effects, pro-

vided there were marker loci close to the QTL positions.

The unidirectional genotyping strategy has the advantage

that it can be applied in breeding programs, using lines that

have been retained under phenotypic selection, or in cases

where only part of a population has survived after exposure

to stress: situations in which bidirectional selective geno-

typing and full-population mapping are not possible.

With unidirectional selective genotyping, power

increased with the size of selected subset to a certain point

and decreased thereafter. The optimum selection propor-

tion was 0.2–0.3, which is in agreement with Darvasi and

Soller (1992) and Gallais et al. (2007). The decreased

power of QTL detection in unidirectional selective geno-

typing after an optimum selection proportion is due to the

increased frequency of lines with alternate genotype in the

selected subset. This reduces the value of the shift in

marker allele frequencies which in turn reduces the power

of QTL detection.

In selective genotyping experiments, segregation dis-

tortion (deviation from the expected allele frequency;

Zamir and Tadmor 1986, Lyttle 1991) can lead to detection

of false associations with the more frequent marker allele

or failure to detect true associations with the less frequent

allele. With genotyping of a randomly selected subset of

the population, it is possible to obtain expected frequencies

that are appropriate for the population. Application of this

approach in the Vandana/Way Rarem population revealed

a high level of segregation distortion (39% of marker loci),

which is not unusual in rice (Wan et al. 1996). By testing

against the allele frequencies estimated from the random

sample, we were able to eliminate many of the apparently

spurious associations that were detected using an expected

frequency of 0.5. However, most of these were also elim-

inated with bidirectional selection. Even if allele

frequencies differ from expectations, selection will cause

them to diverge in the selected tails. Even when there is

substantial segregation distortion, the additional resources

required to genotype a random subset might be better

allocated to bidirectional genotyping.

With bidirectional selective genotyping, it was possible

to obtain reasonable estimates of the proportion of phe-

notypic variation explained at each marker position,

provided a large enough population size was used. With

unidirectional selective genotyping, this proportion tended

to be underestimated. As might be expected, the deviations

from expected values were greatest for large-effect QTL:

those for which a quasi-infinitesimal model is least

appropriate. Consistent with the results of the simulation

experiments, estimates of Rp
2 in the rice experiment were

greater with bidirectional selection than for unidirectional

selection. It should be noted that this estimation method

does not account for effects and interactions of other QTL

that may affect the trait (Lin and Ritland, 1996; Foolad

et al. 2001; Xu et al., 2008), nor does it account for residual

dominance that may be a factor in recombinant inbred line

populations.

The broad-sense heritability and RQTL
2 values considered

in some previous studies (e.g., heritability of 0.05 by Xu
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and Vogl (2000) and RQTL
2 of 0.05 by Tenesa et al. (2005))

are low compared to heritability and RQTL
2 values of some

agronomically important traits when evaluated in well-

designed screens of pure lines in self-pollinated crop spe-

cies (Holland et al. 2003). For example, based on the

variance components reported by Bernier et al. (2007) for

the Vandana/Way Rarem rice population, the heritability of

grain yield evaluated under severe upland drought stress in

single-row plots was 0.45 for selection units consisting of

single unreplicated plots, and 0.56 for the means of two

replicates in a single trial, and there was a single QTL

explaining over 30% of the phenotypic variance. QTL with

such large effects are of immediate interest to plant

breeders for application in marker-assisted selection. We

therefore included large-effect QTL in our simulation

experiments. Our results indicate that both marker-based

and trait-based analysis of selectively genotyped progeny

should be powerful enough to detect QTL with moderate to

large effects, with trait heritabilities and selection intensi-

ties that are relevant to plant breeding programs.

Selective genotyping is particularly attractive for

applications in which the objective is to screen a large

sample of potential donors for large-effect alleles, rather

than to try to detect many small-effect QTL, or when it is

desirable to detect QTL alleles from a donor with effects

across a range of backgrounds. Resources that might

otherwise be used to conduct both phenotyping and geno-

typing in one experimental population in a conventional

mapping experiment could be reallocated to selective

genotyping in several populations. This opens up the

possibility of assaying a wide range of germplasm sources

for useful QTL alleles. With increasing availability of

highly multiplexed and array-based genotyping technolo-

gies, consideration can now be given to routine high-

density genotyping of small numbers of selected lines from

the extremes of breeding populations, providing opportu-

nities to detect QTL with moderate to large effects on traits

of particular interest. If progeny with both low and high

phenotypic values have been retained, then a bidirectional

approach will be preferable to a unidirectional one. In cases

where only the superior progeny have been retained, there

is still scope for QTL detection via unidirectional selective

genotyping, but with a greater risk of both Type I and Type

II error.

It is important to note, however, that selective geno-

typing is limited in its applicability to multiple

uncorrelated traits (Lebowitz et al. 1987; Tenesa et al.

2005; Ronin et al. 1998). If selective genotyping is applied

on lines selected for more than one trait from breeding

populations, detected QTL must be considered to influence

a composite trait with adaptive or commercial value.

In practice, a QTL detection strategy based on selective

genotyping might initially apply selection at an intensity

appropriate to detect QTL of a certain effect size, given the

density of available markers that could be economically

assayed on an individual lines. For example, if the aim was

to have 80% power to detect QTL explaining 10% or more

of the phenotypic variation in a population of 500 lines,

and markers were available at 10-cM intervals, 25 lines

from each tail of the phenotypic distribution could be

genotyped. Subsequently, if significant associations were

detected in one or more chromosome regions, markers in

those regions could be genotyped across the entire popu-

lation, for validation purposes and fine-mapping.
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